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Abstract: Currently, the most widely used protocol for the transportation layer of computer networks
for reliable transportation is the Transmission Control Protocol (TCP). However, TCP has some
problems such as high handshake delay, head-of-line (HOL) blocking, and so on. To solve these
problems, Google proposed the Quick User Datagram Protocol Internet Connection (QUIC) protocol,
which supports 0-1 round-trip time (RTT) handshake, a congestion control algorithm configuration
in user mode. So far, the QUIC protocol has been integrated with traditional congestion control
algorithms, which are not efficient in numerous scenarios. To solve this problem, we propose
an efficient congestion control mechanism on the basis of deep reinforcement learning (DRL), i.e.,
proximal bandwidth-delay quick optimization (PBQ) for QUIC, which combines traditional bottleneck
bandwidth and round-trip propagation time (BBR) with proximal policy optimization (PPO). In PBQ,
the PPO agent outputs the congestion window (CWnd) and improves itself according to network
state, and the BBR specifies the pacing rate of the client. Then, we apply the presented PBQ to QUIC
and form a new version of QUIC, i.e., PBQ-enhanced QUIC. The experimental results show that the
proposed PBQ-enhanced QUIC achieves much better performance in both throughput and RTT than
existing popular versions of QUIC, such as QUIC with Cubic and QUIC with BBR.

Keywords: QUIC; congestion control; deep reinforcement learning; BBR

1. Introduction

At present, computer networks remain the essential platform for information inter-
action, where the transport layer plays an influential role. The emergence of modern
applications, such as video live broadcast and Internet of Things (IoT), has imposed higher
demands on throughput, packet loss rate, and network delay. The development of wire-
less transmission technologies such as 5G and WiFi has made the network environment
even more complex. The Transmission Control Protocol (TCP), as a widely used protocol,
experiences problems such as large handshake delay, head-of-line (HOL) blocking, and
protocol solidification, which increasingly affect network performance. Compared with
TCP, the User Datagram Protocol (UDP) is more efficient for real-time transmission but
lacks reliability.

In 2012, Google proposed the Quick UDP Internet Connection (QUIC) protocol [1],
which realizes orderly, quick, and reliable transport services in user mode based on UDP.
The QUIC protocol reduces the handshake latency to zero round-trip time (RTT) by caching
ServerConfig. Moreover, the QUIC protocol natively supports multiplexing techniques
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where streams on the same connection do not influence each other, which solves the HOL
blocking problem. Additionally, the QUIC protocol decouples the congestion control
algorithm from the protocol stack, which is more flexible than TCP. Currently, the QUIC
protocol has become one focus of researchers in both academia and industry.

For both TCP and QUIC protocols, congestion control is one of the core mecha-
nisms. The basic logic of TCP congestion control contains congestion sensing and the
corresponding disposal pattern, which improves the network utilization by estimating the
bandwidth-delay product (BDP) of the link and adjusting the send rate of clients. Since the
first congestion control algorithm, Tahoe [2], was proposed, there have been dozens of con-
gestion control algorithms developed that are suitable for different scenarios. The operation
rules of traditional congestion control algorithms are shown in Figure 1. Congestion control
algorithms work on the sender, sensing the network state and changing the congestion
window or transmission rate. Currently widely used control algorithms are heuristic and
cannot be optimally executed in dynamic and changeable network environments.

Figure 1. A schematic of congestion control in TCP.

Recently, researchers have started to design TCP congestion control algorithms using
machine learning algorithms. There are numerous versions of TCP based on supervised
learning, such as TCP with DeePCCI [3] and TCP with LSTM-PTI [4]. Naturally, supervised-
learning-based algorithms are only used for passive congestion identification, and training
them requires a great deal of labeled data. As the network environment changes, so
do the network characteristics. In this case, the supervised learning congestion control
algorithm is not suitable for the changing network environment and may no longer be
effective. In light of the advantages of the reinforcement learning (RL) method in sequence
decision [5,6], researchers all over the world have been trying to apply it to congestion con-
trol. So far, some well-known congestion control methods, such as Remy [7], performance-
oriented congestion control (PCC)-Vivace [8], Q-learning TCP (QTCP) [9], Orca [10] and
Aurora [11] algorithms have been proposed for the TCP protocol. For the QUIC protocol, re-
searchers worldwide have proposed some modified versions of QUIC, i.e.,
QUIC-go [12], Microsoft QUIC (MsQUIC) [13], Modified QUIC [14], and Quiche [15].
QUIC-go is an implementation of the QUIC protocol in Go. It keeps up to date with the
latest request for comments (RFC) and is easy to deploy. MsQUIC is a Microsoft implemen-
tation of the QUIC protocol. It optimizes the maximal throughput and minimal latency.
Modified QUIC proposes a modification to the handshaking mechanism to minimize the
time required to update the CWnd, which results in a smooth variation in the CWnd. This
makes modified QUIC protocol easy to deploy and achieves better performance in terms of
throughput. Quiche is an implementation of the QUIC protocol in Rust and C. It performs
well across different applications, such nginx and curl.

However, for these popular versions of QUIC, only heuristic congestion control algo-
rithms are applied. Most heuristic congestion control algorithms commonly perceive the
network state based on simple network models and adopt a fixed strategy, i.e., shrinking
the window when packet loss occurs or RTT increases, and augmenting the window when
an acknowledge character (ACK) is received. Such a simple strategy makes heuristic con-
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gestion control algorithms unable to achieve optimal results in dynamic and changeable
network environments. For example, in the WiFi scenario, where obstacles and human
activity affect network quality, packet loss events do not imply the occurrence of congestion.
However, heuristic congestion control algorithms cannot distinguish that. This issue leads
to poor performance of the QUIC protocol in terms of throughput and latency when the
network settings change. Therefore, to enable the QUIC to achieve better performance in
different network environments, we tried to design DRL-enhanced QUIC using the merits
of DRL in environment awareness and decision making.

The contributions of this work can be summarized as follows:

• First, we developed a novel congestion control mechanism, referred to as proximal
bandwidth-delay quick optimization (PBQ) by combining proximal policy optimiza-
tion (PPO) [16] with traditional BBR [17]. It is able to effectively improve the con-
vergence speed and link stability during the training phase. We then applied the
presented PBQ to the QUIC protocol and formed a new version of QUIC, i.e., PBQ-
enhanced QUIC, which aims to enhance its adaptivity and throughput performance.

• Second, for the purpose of reducing the action space and establishing the connection of
the values of the congestion window (CWnd) for each interaction, we used continuous
action ratio as the output action of PBQ’s agent. Additionally, in the design of the
utility function, we used a relatively simple formulation of the objective function as the
optimization objective and introduced a delay constraint. By doing so, our proposed
PBQ-enhanced QUIC achieves higher throughput and maintains a low RTT.

• Third, we built a reinforcement learning environment for QUIC on the network
simulation software ns-3, where we trained and tested PBQ-enhanced QUIC. The
experimental results showed that our presented PBQ-enhanced QUIC achieves much
better RTT and throughput performance than existing popular versions of QUIC, such
as QUIC with BBR and QUIC with Cubic [18].

The organization of the rest of this paper is as follows: Section 2 describes the QUIC
protocol, including the handshake phase, multiplexing, connection migration, and conges-
tion control. Section 3 gives the design of PBQ and PBQ-enhanced QUIC. Section 4 intro-
duces the training link and testing link and evaluates the performance of PBQ-enhanced
QUIC compared with that of QUIC using different congestion control algorithms. Finally,
Section 5 gives the conclusions.

2. QUIC Protocol
2.1. The Basic Concept of QUIC

The QUIC protocol is a secure and reliable data transfer protocol first proposed by
Google in 2012, which was released as a standardized version of QUIC, RFC 9000 [19],
by the Internet Engineering Task Force (IETF). The bottom layer of QUIC is UDP, which
makes it compatible with current network protocols. At the same time, the QUIC protocol
is compatible with traditional congestion control algorithms in TCP. The QUIC proto-
col has numerous improvements over TCP, mainly in handshaking, multiplexing, and
connection migration.

2.2. Handshake

TCP is a plaintext transport protocol and transport layer security (TLS) is required to
implement data encryption transmission. In TLS 1.2, two RTTs are required for the TLS
handshake phase and three RTTs for the total handshake delay. Under TLS 1.3, the TLS
handshake phase requires one RTT, and the handshake phase still requires two RTTs.

Comparatively, the QUIC protocol optimizes the handshake process. In the hand-
shake phase, QUIC incorporates the transmission parameters into the encryption part.
When the first connection is established, the client sends authentication- and encryption-
related information to the server. It takes only one RTT to establish a connection. Alterna-
tively, we can use quantum key distribution to replace the original encryption information
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exchange [20]. When the connection is established once again, the client uses the preshared
key to establish an encrypted connection with the server during zero RTT.

2.3. Multiplexing

Multiplexing is multiple streams on a connection at the same time, commonly on a
Hyper Text Transfer Protocol (HTTP) stream. For HTTP/2, a TCP connection can support
multiple HTTP streams. However, HOL blocking in the TCP protocol causes interference
between HTTP streams, which affects their performance. In advance, multiple streams
can be created on a single QUIC connection, which reduces the handshake frequency. The
QUIC protocol is implemented based on UDP. Streams on the same QUIC connection are
independent of each other, which solves the HOL blocking problem.

2.4. Connection Migration

One TCP connection is known to be identified by a quintuple, i.e., <IPsource, PORTsource,
IPdest, PORTdest>, where IPsource denotes the source IP address, PORTsource denotes the
source port, IPdest denotes the destination IP address, and PORTdest denotes the destination
port [21]. If one term in the quadruple changes, the connection is broken. By using a 64-bit
random ID as the connection identifier, the QUIC protocol avoids the effect of network
switching. The simple process of connection migration is shown in Figure 2.

Figure 2. Connection migration.

Particularly, before the client’s IP changes, the endpoints communicate via a nonde-
tection packet. After IP changes, the path detection is performed to verify the reachability
before connection migration starts. If the path detection fails, the connection migration
cannot be performed; otherwise, a fresh connection is established. The IP address is verified
between the client and the server, and the endpoint holding the latest IP address of the peer
migrates. When migration occurs, the congestion control part and the reliable transport
protocol estimation part of the path need to be reset. After the connection migrates, it sends
a nonprobe packet.

2.5. Congestion Control in QUIC

The QUIC protocol is a reliable UDP-based data transfer protocol, which makes it
compatible with existing network protocols. The congestion control algorithm in TCP
is implemented in kernel mode, and if an upgrade is performed, the kernel needs to be
recompiled. However, the QUIC protocol straddles kernel mode and user mode, and its
congestion control part is in user mode. Thus, it can be easily upgraded. In particular, the
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QUIC protocol supports the configuration of different congestion control algorithms for
applications, making it possible to optimize for specific applications.

3. The PBQ-QUIC

In this section, we describe PBQ and its application to QUIC to form the PBQ-
enhanced QUIC.

3.1. The Basic Idea of PBQ

For clarity, Figure 3 shows the workflow of PBQ. PBQ combines PPO with BBR to
accurately identify the network state. It can effectively identify congestion and packet loss
events. PBQ is divided into three main parts: Monitoring, Decision, and Pacer modules.
The Monitoring module collects environment state and sends it to the Decision module.
The Decision module outputs actions, including at and the pacing rate, according to the
network state. The Pacer module distributes actions to the corresponding senders. In
the Decision module, the Controller distributes the network state to the PPO and the
BBR. The PPO part outputs at according to st using the new policy and sends it to the
environment through Pacer. The replay memory stores the experience of past interactions.
After multiple interactions, the policy networks and the value network are updated using
the past interaction experience. Inspired by Orca, our Decision module adopts a two-level
regulation mechanism, which is shown in Figure 4. The underlying BBR algorithm performs
a classical decision-making behavior driven by ACK. The DRL agent evaluates the network
congestion and predicts the BDP according to the state output by the Monitoring module.

Figure 3. The framework of PBQ.

• Monitoring Module

We set the network state collection interval to 100 ms, and the designed state quantity
is shown in Table 1. Because the interval is not strictly equal to 100 ms, we also count the
intervals. The remaining states are the statistics within each interval.
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Table 1. State statistics description.

State Description

CWndt Current congestion window
intervalt Cata update interval

deliveryRatet Average delivering rate (throughput)
RTTt Averaged RTT

packetLosst Average loss rate of packets

Figure 4. The two-level control logic of PBQ’s enhanced QUIC.

• Reward Function Design

We trained PBQ using a linear function with constraints. First, we define a linear
utility function as α ∗ deliveryRatet − β ∗ packetLosst, where α denotes the coefficient of
deliveryRatet, deliveryRatet denotes the delivery rate in time t, β denotes the coefficient of
packetLosst, and packetLosst denotes the packet loss rate in time t. Then, we formulate an
optimization problem to maximize the linear utility function under a given RTT constraint,
i.e., RTTt ≤ minRTTt , t = 1, 2, 3 . . . , n, where RTTt denotes the last RTT in time t, and
minRTTt denotes the minimum RTT from the establishment of the connection to time t.

max α ∗ deliveryRatet − β ∗ packetLosst

s.t. RTTt ≤ minRTTt ,t = 1, 2, 3 . . . , n .
(1)

We use the maximization objective as the base reward function:

Rt = α ∗ deliveryRatet − β ∗ packetLosst (2)

With the delay constraint, the final reward function is

Rt = α ∗ deliveryRatet − β ∗ packetLosst

Rt =

{
Rt RTTt ≤ γ ∗minRTTt

Rt − η RTTt > γ ∗minRTTt

(3)

where γ denotes the penalty threshold, and η denotes the penalty term when RTTt >
γ ∗minRTTt.

• Action Design

Reinforcement learning action types can be divided into two categories, discrete and
continuous actions. We first used discrete actions, but analyzing the experimental re-
sults, we found that when using discrete actions, the output of the agent considerably
fluctuated, and it was difficult to achieve better performance in the initial stages of the
interaction. In general, the discrete action does not favor the early stability of the net-
work links. The final solution in this study draws on the additive increase multiplicative
decrease (AIMD) [22] idea in traditional congestion control, and we set the action output as
CWndRatio. The mapping relationship between CWndRatio and the congestion window is
as follows:

newCWnd = CWnd ∗ 2CWndRatio (4)
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The relationship between the values of CWnd for each interaction was established, which
reduces the fluctuation of the action and ensures the excellent performance of the model.

• Learning Algorithm for PBQ

For the DRL agent, PPO is employed, which is a classical actor-critic algorithm. We
used tanh as the activation function in both actor and critic neural networks. Because
the state transitions in traditional congestion algorithms are not complex, we preferred to
build a simpler neural network and train on it. Finally, we constructed a three-layer neural
network, where the hidden layer contains 64 neurons.

For clarity, the PBQ training phase is summarized in Algorithm 1. On lines 1–2 of
Algorithm 1, the training episode Episodes is set and the replay memory D is initialized,
which is used to store state, action and reward. The policy parameters θnew and value
parameters φ are also initialized with random weights. We set policy parameters θold equal
to θnew. Then, on lines 4–16, at each episode, we first reset the environment and obtain the
initial state s0 and initial reward r0. We use PPO to regularly output αt according to the
new policy πθnew . We map αt to CWndt, which is also the estimated link BDP. Then, CWndt
is preformed into environment. In each step, PBQ collects network states st and st+1, action
value at, and the corresponding reward rt, and updates the replay memory D. The policy
parameters θnew and value functions φ are updated when the number of steps accumulates
to the policy update threshold update_timestep. The underlying BBR method is driven by
ACK to control the specific pacing rate of the clients.

Algorithm 1 PBQ’s learning algorithm.

1: Initialize replay memory D and training episode Episodes
2: Initialize policy parameters θnew, value parameters φ, θold ← θnew
3: for episode = 1 to Episodes do
4: Reset environment, obtain initial state s0 and initial reward r0
5: i← 1
6: for t = 1 to steps do
7: if time to play PPO action then
8: Run policy πθnew , obtain PPO action αt
9: Map αt to CWndt, CWndt = CWndt−1 ∗ 2αt

10: Perform CWndt
11: else
12: Play a BBR action, perform pacingRatet
13: end if
14: Collect {st, at, rt, st+1}, update D
15: t = t + 1
16: if t % update_timestep == 0 then
17: θold ← θnew, update θnew and φ
18: end if
19: end for
20: end for

• Pacer

The Pacer module is responsible for distributing the actions output by the Decision
module to the corresponding clients. The action distribution is driven by an update callback
for the CWnd and an update callback for the pacing rate. For pacing rate, when the client
receives an ACK or packet loss occurs, the underlying BBR adjusts the pacing rate and
triggers a pacing rate update callback. For CWnd, the Decision module receives the updated
network state from the Monitoring module; the RL part outputs α and calculates the current
CWnd; then, the callback function is called to update the CWnd on the client via Pacer
module. As shown in Figure 5, the Pacer module distributes actions to the corresponding
clients based on their ids.



Entropy 2022, 25, 294 8 of 15

Figure 5. Action distribution in the Pacer module.

3.2. PBQ-Enhanced QUIC

Figure 6 shows the differences in congestion control between PBQ-enhanced QUIC
and traditional QUIC. QUIC uses Cubic as the default congestion control algorithm. Cu-
bic is a heuristic algorithm that is driven by events at the sender side, including ACK
receipt, packet loss, etc. The policy of Cubic is based on packet loss events, which leads
to poor performance in scenarios where packet loss is present. PBQ is a combination of
the DRL method PPO and BBR with the advantages of both. Our deployment adopts the
client/server (C/S) mode, which only modifies QUIC in client and adopts the standard
QUIC implementation in the server. We deeply integrated PBQ into the QUIC client. We
added the Monitoring module for network state statistics, the Decision module for rate
control, and the Pacer module for rate distribution. The Decision and Pacer modules are
asynchronously executed, and they do not affect the behavior of the clients.

Figure 6. PBQ-enhanced QUIC.

We specifically designed states and actions. The Monitoring module periodically
collects the state of the environment and sends the processed data to the Decision module.
We collected a number of environment states, including pacing rate, current RTT and
minimum RTT, interval, packet loss rate, CWnd, and so on. The output of the Pacer module
includes the CWnd and pacing rate of the senders. The BBR regulates the pacing rate of the
clients, and the DRL agent gives the congestion window as the predicted BDP. Then, the
Pacer module changes the sending behavior of the clients.

4. Simulation Performance

We tested the PBQ-enhanced QUIC in various scenarios on the open-source network
simulator ns-3 [23] and compared the results with those of QUIC using different congestion
control algorithms. We wrote simulation scripts in C++ and implemented our DRL agent
based on MindSpore in python. Then, we ran the comparison experiments on a Dell
PowerEdge R840 server with 256 G memory, 64 cores, and a GeForce RTX 3090 GPU.
We tested the model on a large number of links with different parameters and analyzed
the sensitivity of PBQ-enhanced QUIC to the number of link flows and packet loss rate.
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When the testing and training links were quite different, the PBQ-enhanced QUIC still
performed well.

4.1. Our Simulation Environment

The application of DRL methods is inseparable from the interaction with the environ-
ment. Several researchers have implemented their own simulation environments, but they
all target the TCP domain, and there is no mature solution for the simulation environment
of the QUIC protocol alone. At the same time, we think that the development of a network
simulation environment is a huge and meticulous project that should be focused on the
study of congestion control algorithms; therefore, we chose the ns-3 platform to build the
training and testing environment. We built our own simulation environment based on
NS3-gym [24] and Quic-NS-3 [25] to test PBQ-enhanced QUIC.

4.2. Training

We also applied the PPO method to the congestion control part of QUIC. We trained
PPO and PBQ on the link shown in Figure 7. For training, we set N to two, which means
that two traffic flows shared a link. The link parameters are shown in Table 2. Our model
converged in 50 epochs, each consisting of 1200 steps. In contrast, the experimental results
showed that after combining with BBR, the model converged faster, and the throughput
and RTT performance were more stable in the initial interaction.

Figure 7. The simulation link of PBQ.

Table 2. Training link.

Attribute Value

Number of flows 2
Bottleneck bandwidth 2 Mbps

RTT 30 ms
Queue capacity 75 Kilobytes

Queue scheduling algorithm First Input First Output (FIFO)

As illustrated in Figure 8b,c, the algorithm we propose can effectively improve the
stability of the pretraining action while ensuring the quality of the link. As shown in
Figure 8a, the combination with the BBR effectively speeds up the speed of convergence,
which solves the problems we described before.
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(a)

(b)

(c)

Figure 8. Training process after 600 episodes: (a) training reward; (b) training throughput; (c) training RTT.

4.3. Testing

Similarly, we compared PBQ-enhanced QUIC with QUIC using current learning-based
congestion control algorithm Remy and heuristic algorithms such as Bic [26], Cubic, Low
Extra Delay Background Transport (LEDBAT) [27], NewReno [28], Vegas [29], and BBR.
[id = S.L.] The link parameters are shown in Table 3.
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Table 3. Testing link.

Attribute Value

Number of flows 2∼8
Bottleneck bandwidth 10 Mbps

RTT 100 ms
Packet loss rate 0%∼10%
Queue capacity 75 Kilobytes

Queue scheduling algorithm FIFO

In traditional algorithms, BBR is based on network modeling, while the remaining
algorithms take packet loss events as congestion occurrence signals. In this part, we still
used the dumbbell link in Figure 7. To demonstrate the adaptability of our algorithm, there
was a large deviation between our test and training links. Specifically, we determined
the performance of PBQ-enhanced QUIC in different scenarios, including its excellent
adaptation and tolerance to packet loss and number of flows.

4.4. Packet Loss Rate

We tested the proposed algorithm using a previously trained model in a different
network scenario. The throughput changes with the packet loss rate as illustrated in
Figure 9a, and the RTT is shown in Figure 9b.

(a)

(b)

Figure 9. Link quality of schemes across different packet loss rates with flow number 2: (a) through-
put; (b) RTT.
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When packet loss occurs, QUIC with congestion control algorithms that take packet
loss events as a signal, such as QUIC with Cubic and QUIC with NewReno, frequently enter
fast recovery, resulting in low throughput and low RTT. While QUIC with BBR requires
constant probing of the network, QUIC with Remy relies on a state-action table. It is difficult
for them to balance throughput and RTT. Our algorithm can efficiently identify the overall
state of the network and can output relevant actions by periodically collecting the network
state. As the packet loss rate increases, the throughput performance of our algorithm is less
affected, and it is the best among the different packet loss rates. Furthermore, our proposed
algorithm achieves higher throughput analso has better packet loss tolerance ability than
QUIC with Remy and QUIC with BBR.

4.5. Flow Number

Then, the packet loss rate was set to 2.5%, and we modified the number of flows
and compared the throughput and delay performance of different QUIC implementations.
The results are shown as Figure 10a,b. Figure 10a represents the total link throughput.
Figure 10b indicates the average RTT.

(a)

(b)

Figure 10. Link quality of schemes for different flow numbers with packet loss rate of 2.5%:
(a) throughput; (b) RTT.

Owing to the presence of random packet loss, algorithms that take packet loss events
as congestion occurrence signals fail to accurately identify the cause of congestion. In
the policies of these congestion control methods, the current link can only support a low
throughput; thus, the throughput is at a low level. In this case, the flows barely affect each
other. As a result, as shown in Figure 10a, the total throughput of the link linearly increases
with the number of flows. They cannot accurately estimate the link BDP and occupy the
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full link bandwidth, so the average link RTT is close to the default RTT. Compared with
QUIC with BBR and QUIC with Remy, PBQ-enhanced QUIC reduces the detection process
of link BDP and achieves excellent throughput and RTT by optimizing the reward function.

5. Conclusions

In this study, we first developed a two-level regulatory mechanism PBQ, which
combines the heuristic algorithms BBR and DRL to approximate PPO. The convergence
rate of the model is accelerated by using BBR to estimate the specific transmission rate.
Moreover, we proposed PBQ-enhanced QUIC, an implementation of QUIC that uses
PBQ as a congestion control algorithm. Unlike QUIC with heuristic congestion control
algorithms, our QUIC implementation learns congestion control rules from experience by
using RL signals. Therefore, our QUIC implementation can be better adapted to various
network settings.

As shown in Section 4.2, the combination with BBR can effectively speed up the
convergence of the PPO during the training phase on the premise of ensuring link quality.
As shown in Sections 4.2 and 4.4, compared with other QUIC versions, PBQ-enhanced
QUIC achieves higher throughput performance in various network settings. PBQ-enhanced
also has better RTT performance than QUIC with BBR and QUIC with Remy. We think
that combining DRL methods with traditional algorithms to design congestion control
mechanisms for QUIC will be a major trend in the future, and PBQ-enhanced QUIC
provides a new idea to do so.

In future work, we plan to build a testbed in real-world networks and test PBQ-
enhanced QUIC on it. We will improve the PBQ-enhanced QUIC based on its performance
in real-world networks. Moreover, different applications have different requirements
on network metrics, so we plan to design congestion control algorithms for different
applications by taking advantage of the feature that the congestion control part of QUIC is
implemented in user mode. We expect different applications to perform efficiently on the
same network.
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Abbreviations
The following abbreviations are used in this manuscript:

TCP Transmission Control Protocol
HOL Head-of-line
QUIC Quick UDP Internet Connection
RTT Round-trip time
DRL Deep reinforcement learning
PBQ Proximal bandwidth-delay quick optimization
BBR Bottleneck bandwidth and round-trip propagation time
PPO Proximal policy optimization
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CWnd Congestion window
IoT Internet of Things
UDP User Datagram Protocol
BDP Bandwidth-delay product
RL Reinforcement learning
PCC Performance-oriented congestion control
QTCP Q-learning TCP
MsQUIC Microsoft QUIC
RFC Request for comments
ACK Acknowledge character
IETF Internet Engineering Task Force
TLS Transport layer security
HTTP Hyper Text Transfer Protocol
AIMD Additive increase multiplicative decrease
C/S Client/server
LEDBAT Low extra delay background transport
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